National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Comparison of noise generated by differently constructed vents
Bernard, Jan ; Doložílek, Miroslav (referee) ; Jedelský, Jan (advisor)
This diploma thesis deals with comparing noise levels of three side vents of different constructions, which are used for distribution and directing of ventilation air in a cabin of an automobile. The fundamental knowledge of the physical and physiological acoustics is described in the introduction part of this study. Following the introduction part there is a brief explanation of the car air conditioning system (HVAC system) as well as are explained the acoustic properties of specific elements of this system. The study also deals with dividing ventilation vents and describes the vast traceable types of automobile vents. Prior to the description of the experiment, which was conducted as a part of this study, the procedures and results of the measurements carried out in other theses are explained. Measurement of noise levels of the compared vents was carried out in a semi-anechoic chamber under the ČSN ISO 3475 standardization. To clarify increase of noise generated by the vent in an interior of an automobile, additional measurement of noise was carried out in a cabin of Porsche Cayenne 2018. From the gathered results we can conclude that under the constant flow, (of 60 square meters per hour) louder vents are those with higher pressure loss. This pressure loss is dependant primarily on the speed of the flow in the vent, as well as on the number and the adjustment of the deflectors. In a cabin of an automobile, the noise produced by the vent is negligible in comparison with total noise in an interior of a car. However, in the area surrounding the air flowing out from the vent, (approximately 0,7 meters from it) the level of acoustic pressure increases significantly.
CFD simulation of air flow inside a car cabin
Kučera, Cyril ; Elcner, Jakub (referee) ; Pokorný, Jan (advisor)
The diploma thesis deals with CFD simulating the air flow inside the car using the numerical calculation program Star-CCM+. The aim of the thesis was to prepare 3D geometry, resp. realistic model of the real car, preparing boundary conditions including material properties, simulating the steady state of the environment and evaluating the speed and temperature of the car cabin. The paper presents the results of the temperature distribution and air velocities in the cabin during the winter, spring and summer conditions in HVAC on and HVAC off modes. The monitored air temperatures and surface temperatures of the car parts are compared with the measured data. The average difference between simulation and measurement was at air temperatures of 2.3 °C and surface temperatures of 3.4 °C.
Comparison of noise generated by differently constructed vents
Bernard, Jan ; Doložílek, Miroslav (referee) ; Jedelský, Jan (advisor)
This diploma thesis deals with comparing noise levels of three side vents of different constructions, which are used for distribution and directing of ventilation air in a cabin of an automobile. The fundamental knowledge of the physical and physiological acoustics is described in the introduction part of this study. Following the introduction part there is a brief explanation of the car air conditioning system (HVAC system) as well as are explained the acoustic properties of specific elements of this system. The study also deals with dividing ventilation vents and describes the vast traceable types of automobile vents. Prior to the description of the experiment, which was conducted as a part of this study, the procedures and results of the measurements carried out in other theses are explained. Measurement of noise levels of the compared vents was carried out in a semi-anechoic chamber under the ČSN ISO 3475 standardization. To clarify increase of noise generated by the vent in an interior of an automobile, additional measurement of noise was carried out in a cabin of Porsche Cayenne 2018. From the gathered results we can conclude that under the constant flow, (of 60 square meters per hour) louder vents are those with higher pressure loss. This pressure loss is dependant primarily on the speed of the flow in the vent, as well as on the number and the adjustment of the deflectors. In a cabin of an automobile, the noise produced by the vent is negligible in comparison with total noise in an interior of a car. However, in the area surrounding the air flowing out from the vent, (approximately 0,7 meters from it) the level of acoustic pressure increases significantly.
CFD simulation of air flow inside a car cabin
Kučera, Cyril ; Elcner, Jakub (referee) ; Pokorný, Jan (advisor)
The diploma thesis deals with CFD simulating the air flow inside the car using the numerical calculation program Star-CCM+. The aim of the thesis was to prepare 3D geometry, resp. realistic model of the real car, preparing boundary conditions including material properties, simulating the steady state of the environment and evaluating the speed and temperature of the car cabin. The paper presents the results of the temperature distribution and air velocities in the cabin during the winter, spring and summer conditions in HVAC on and HVAC off modes. The monitored air temperatures and surface temperatures of the car parts are compared with the measured data. The average difference between simulation and measurement was at air temperatures of 2.3 °C and surface temperatures of 3.4 °C.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.